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Abstract
We calculate the negative integer moments of the (regularized) characteristic
polynomials of N × N random matrices taken from the Gaussian orthogonal
ensemble (GOE) in the limit as N → ∞. The results agree nontrivially with
a recent conjecture of Berry and Keating motivated by techniques developed
in the theory of singularity-dominated strong fluctuations. This is the first
example where nontrivial predictions obtained using these techniques have
been proved.

PACS numbers: 02.10.De, 02.10.Yn, 05.45.Mt

1. Introduction

Let Ĥ = Ĥ T (we here use the symbol T to denote matrix or vector transposition and ∗ to denote
complex conjugation) be an N × N random symmetric matrix with real entries distributed
according to the standard joint probability density of the Gaussian orthogonal ensemble (GOE)
of random matrix theory,

P(Ĥ ) = CN e− N

2J 2 TrĤ 2

(1)

with respect to the measure dĤ = ∏N
i=1 dHii

∏
i<j dHij , where the normalization constant

CN is given by

CN = 1

2N/2

(
N

πJ 2

) N(N+1)

4

(2)

and let

ZN(µ) = det(µ1N − Ĥ ) (3)

denote its characteristic polynomial. We here are interested in the negative integer moments
of the absolute value |Z|, defined by averaging over the GOE, when Im µ > 0, in the limit
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as N → ∞. (The positive moments of the characteristic polynomials of random unitary-
symmetric matrices were calculated in [14]; for the positive integer moments it was confirmed
in [5] that, as expected, these results also apply to the large N limit of matrices in the GOE;
see also [16].)

Berry and Keating [3] (hereinafter referred to as BK) have recently put forward a general
conjecture about the asymptotics of the negative moments of the absolute values of the
characteristic polynomials3 of random matrices in the limit as the matrix size tends to infinity
when Im µ is scaled by the mean eigenvalue density and tends to zero. This conjecture
applies to all negative moments, rather than just to negative integer moments, and covers
all the three classical random matrix ensembles (i.e. the unitary, orthogonal and symplectic
ensembles). It predicts a highly nontrivial dependence of the asymptotics on the power to
which the polynomial is raised. This is in contrast to the case when the large-matrix limit is
taken without scaling Im µ by the mean level spacing; then the moment asymptotics is much
simpler [11].

In the case of the Gaussian unitary ensemble (GUE) of random matrices, the conjecture
given in BK agrees with the values of the negative integer moments calculated by Fyodorov in
[6] and shown to be universal (in the sense that they apply to all unitary-invariant ensembles
of Hermitian matrices) in [19]. However, these values also happen to coincide with the
corresponding ones when Im µ is not scaled, so this cannot be said to constitute a test of the
nontrivial aspects of the conjecture.

For the GOE of random matrices the conjecture in BK is that the ensemble average of
|ZN(µ)|−k diverges like ε−ν(k), as ε, Im µ scaled by the mean eigenvalue density, tends to
zero, with

ν(k) = int(k)

(
k − 1 + int(k)

2

)
. (4)

It was suggested in BK (page L4) that, in the notation of the present paper, when k is an integer
it is possible that the leading-order power-law behaviour (4) is multiplied by a power of log 1

ε
.

Our first aim here is to extend the heuristic arguments developed in BK to recover the
logarithmic factor when k takes integral values; this turns out to be simply log 1

ε
for each k. Our

second aim then is to prove the resulting expression by a direct evaluation of the GOE average.
In fact, we are able to go significantly further in that we calculate the precise asymptotic form
of the moments in the appropriate limit. The general expression we obtain (see (40) and (41))
takes the form of a multiple integral and is interesting in its own right, in particular in view
of recent endeavours to understand the analytic structure behind the so-called replica limit
k → 0 [12, 18]. An asymptotic evaluation of this integral leads to our final result, given in
equation (52).

The heuristic arguments described in BK, which motivate the conjecture made there, are
an application of general techniques associated with the theory of singularity-dominated strong
fluctuations. These techniques have been previously applied to analyse twinkling starlight [1],
van Hove-type singularities [2] and the influence of classical periodic orbit bifurcations on
quantum energy level [4] and wavefunction [13] statistics. In all these applications the results
correspond to power-law asymptotics of the moments of fluctuating quantities as the relevant
parameter vanishes, with exponents that emerge from a competition between different singular
contributions. It has been shown for the moments of the intensity fluctuations beyond a one-
dimensional refracting screen that exactly when one kind of singularity overtakes another in

3 Note that if the absolute value is not taken, the negative moments are non-singular, see, e.g., [6]. In this case a
thorough study of the moments, in the framework of the theory of hypergeometric functions in several variables, can
be found in [22].
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the competition there is an additional logarithmic factor [8, 9]. (The constants multiplying the
various asymptotic contributions were also obtained in this case.) Importantly, in none of
the applications studied previously has it been possible to prove nontrivial predictions of the
theory of singularity-dominated strong fluctuations by an asymptotic analysis that could be
made rigorous.

In the example we study here, the singularity competition considered in BK is between
clusters of nearly degenerate eigenvalues. Clusters involving p eigenvalues give rise to a
contribution to the ensemble average of |ZN(µ)|−k that diverges like ε−νp(k) as ε → 0. For
a given k, the dominating cluster size is the one for which the exponent νp(k) is maximal. It
was shown in BK that this produces the exponent (4). Here, in section 2, we show that for k
an integer, when one p takes over from another as dominant, there is an additional logarithmic
factor, as described above. In section 3, we prove this result by calculating the GOE average
explicitly, in the large matrix-size limit. This represents the first example where nontrivial
predictions of theory of singularity-dominated strong fluctuations have been proved.

2. Cluster contributions

We here re-analyse the arguments presented in BK to recover explicitly the logarithmic factor
anticipated there in the case of negative integer moments of characteristic polynomials of
random matrices in the GOE.

Let Mp(−k, ε) denote the contribution from clusters of p eigenvalues (we henceforth
refer to this as the p-cluster contribution) to the GOE average of |ZN(µ)|−k , where ε is Im µ

scaled by the mean eigenvalue density. Treating a p-cluster of unfolded levels x1, x2, . . . , xp as

isolated from the rest of the spectrum, the contribution to the average,
∏p

n=1

(
x2

n + ε2
)−k/2

, and

the joint probability density function, P(x1, x2, . . . , xp) ∝ ∏p−1
m=1

∏p

n=m+1 |xm − xn|, combine
to give (cf equations (9) and (10) of BK)

Mp(−k, ε) ∝
∫ X

−X

dx1

∫ X

−X

dx2 · · ·
∫ X

−X

dxp

∏p−1
m=1

∏p

n=m+1 |xm − xn|[(
x2

1 + ε2
)(

x2
2 + ε2

) · · · (x2
p + ε2

)]k/2 . (5)

To be precise, the limits of integration were given as −∞ and ∞ in BK. This distinction will
be important when k is an integer, and not otherwise. A finite integration range is, in fact,
more appropriate; in the case of the circular ensembles of random matrix theory because the
eigenphases lie in a finite interval, and in the case of the Gaussian (or similar) ensembles
because the potential effectively limits the range in which the eigenvalues lie.

Making the change of variables xm = εum gives

Mp(−k, ε) ∝ ε
p(p+1)

2 −pk

∫ X/ε

−X/ε

du1

∫ X/ε

−X/ε

du2 · · ·

×
∫ X/ε

−X/ε

dup

∏p−1
m=1

∏p

n=m+1 |um − un|[(
u2

1 + 1
)(

u2
2 + 1

) · · · (u2
p + 1

)]k/2 . (6)

It was demonstrated in BK that the p-cluster contribution dominates the kth moment when
p � k < p + 1. It is straightforward to see that the integral in (6) converges as ε → 0 in the
range p < k < p + 1. It is then asymptotically consistent to replace the limits of integration
by −∞ and ∞, and the results of BK hold without change. When k is an integer, the p = k

integral diverges and so must be treated more carefully.
Let

Ip(X/ε) =
∫ X/ε

−X/ε

du1

∫ X/ε

−X/ε

du2 · · ·
∫ X/ε

−X/ε

dup

∏p−1
m=1

∏p

n=m+1 |um − un|[(
u2

1 + 1
)(

u2
2 + 1

) · · · (u2
p + 1

)]p/2 . (7)
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Consider first the case when p = 1:

I1(X/ε) =
∫ X/ε

−X/ε

du1(
u2

1 + 1
)1/2 (8)

which clearly diverges like log 1
ε

as ε → 0.
Consider next the case when p = 2:

I2(X/ε) =
∫ X/ε

−X/ε

du1

∫ X/ε

−X/ε

du2
|u1 − u2|(

u2
1 + 1

)(
u2

2 + 1
) ∝

∫ X/ε

−X/ε

du1

∫ u1

−X/ε

du2
u1 − u2(

u2
1 + 1

)(
u2

2 + 1
) . (9)

This can be written as two integrals, one associated with the first term in the numerator of the
integrand and the other associated with the second term. It may be seen straightforwardly that
again both integrals diverge like log 1

ε
as ε → 0.

In the general case

Ip(X/ε) ∝
∫ X/ε

−X/ε

du1

∫ u1

−X/ε

du2 · · ·
∫ up−1

−X/ε

dup

∏p−1
m=1

∏p

n=m+1(um − un)[(
u2

1 + 1
)(

u2
2 + 1

) · · · (u2
p + 1

)]p/2 . (10)

Expanding out the numerator of the integrand, Ip may be expressed as a sum of integrals,
each coming from a term in the resulting series. It may be seen immediately that each integral
diverges like log 1

ε
as ε → 0. Thus when k is an integer, the GOE average of |ZN(µ)|−k

diverges like

ε−k(k−1)/2 log
1

ε
(11)

as ε → 0.

3. GOE negative moments

Our purpose now is to prove the result obtained at the end of the previous section. We do this
by making a careful asymptotic analysis of the exact GOE average defining the moments.

Regularizing the characteristic polynomial ZN(µ) = det
(
µ1N − Ĥ

)
by taking Im µ > 0,

one may represent negative half-integer powers of the determinant as a Gaussian integral:

[ZN(µ)−n/2] = 1

(2π i)nN/2

∫ n∏
k=1

dSk exp

{
i

2
µ

n∑
k=1

ST
k Sk − i

2
Tr

[
Ĥ

n∑
k=1

Sk ⊗ ST
k

]}
(12)

where we have introduced real-valued N-dimensional vectors Sk = (sk,1, . . . , sk,N )T for
k = 1, 2, . . . , n so that dSk = ∏N

i=1 dsk,i .
Denoting by 〈· · ·〉 the expectation value with respect to the distribution (1), our goal is to

calculate the negative integer moments

K(1)
N,n(µ1) = 〈[ZN(µ1)]−n/2〉 (13)

as well as the correlation function

K(2)
N,n(µ1, µ2) = 〈[ZN(µ1)ZN(µ∗

2)]
−n/2〉 (14)

assuming Im(µ1) = Im(µ2) > 0. It will be convenient for us to define µ1 = µ + ω
2 + iδ and

µ∗
2 = µ − ω

2 − iδ, with µ,ω and δ real and δ > 0. Note that when ω = 0, the correlation
function reduces to the negative integer moments of the absolute value of the characteristic
polynomial, which are the main objects of interest here.
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We start with (13). Performing the ensemble averaging in the standard way using the
identity ∫

dĤ P(Ĥ ) e± i
2 Tr[Ĥ Â] = exp

{
− J 2

16N
Tr[Â2 + ÂÂT ]

}
(15)

gives

K(1)

N,n(µ1) = 1

(2π i)nN/2

∫ n∏
k=1

dSk exp

{
i

2
µ1

n∑
k=1

ST
k Sk − J 2

8N

n∑
k,l=1

(
ST

k Sl

)(
ST

l Sk

)}
. (16)

Introducing an n×n real symmetric matrix Q̂ with matrix elements Q̂kl = ST
k Sl , we note

that the integrand may be conveniently rewritten in the form

exp

{
i

2
µ1 Tr Q̂ − J 2

8N
Tr Q̂2

}
.

This fact allows us to employ the ‘integration theorem’ proved in appendix A of [7] and to
rewrite the integral in (16) in terms of an integral over the positive definite matrices Q̂:

K(1)

N,n = C
(1)

N,n

∫
Q̂>0

dQ̂ e−N [−iµ1TrQ̂+ 1
2 TrQ̂2] det Q̂

(N−n−1)/2
(17)

provided N � n + 1. We have also rescaled the integration variable Q̂ → 2NQ̂ so that the
overall constant C

(1)
N,n is given by

C
(1)
N,n = (−iN)Nn/2π− n(n−1)

4
1∏n−1

j=0 �
(

N−j

2

)
where �(z) is the Euler gamma-function.

As the last step of the procedure we choose the eigenvalues q1, . . . , qn and the
corresponding eigenvectors of Q̂ as new integration variables. This corresponds to the change
of the volume element

dQ̂ = 1

n!
Gn|�{q̂}|

n∏
i=1

dqi dµ(On) (18)

where �{q̂} = ∏
i<j (qi − qj ) is the Vandermonde determinant and dµ(On) stands for the

normalized invariant measure on the orthogonal group O(n). Here

Gn = (π)
n(n+1)

4
1∏n

j=1 �
(

j

2

) (19)

and the factor 1/n! ensures that the integration domain with respect to all variables qk can be
taken to be 0 < qk < ∞.

The integrand is obviously O(n) invariant and so we obtain

K(1)

N,n(µ1) = C̃
(1)

N,n

∫
qi>0

∏
i

(
dqi eiN(ω/2+iδ)qi q

−(n+1)/2
i

)|�{q̂}| exp

{
−N

2

n∑
i=1

A(qi)

}
(20)

where C̃
(1)
N,n = 1

n!GnC
(1)
N,n and

A(q) = J 2q2 − 2iµq − ln q. (21)

We are here mainly interested in the limit of large matrix size, where one expects the
results to show universality. To extract the leading asymptotics as N → ∞ when n is fixed
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we employ the saddle-point method, and consider Nω as well as Nδ to be of the order unity
when N → ∞. The stationary points of A(qi) are obviously given by

2J 2qi − 2iµ − 1

qi

= 0 (22)

where i = 1, 2, . . . , n. Each of these equations has two solutions:

q± = iµ ±
√

2J 2 − µ2

2J 2
. (23)

We would like to choose the spectral parameter µ to satisfy |µ| < J
√

2 in accordance with
the idea of considering the bulk of the spectrum for GOE matrices of large size. Then only
for q+ are the real parts positive, and so only in this case do the corresponding saddle points
contribute to the integral over the positive semiaxis q > 0. Consequently, among the 2n

possible sets of saddle points (q±, . . . , q±) only the choice

q̂+ = diag(q+, . . . , q+) (24)

is relevant.
The presence of the Vandermonde determinants makes the integrand vanish at the saddle-

point sets and so care should be taken when calculating the leading-order contribution to the
integral. This turns out to be given by

K(1)

N	1,n(µ1) = C̃(1)
N,n(q+)

(N−n−1)/2 e− N
2 n[J 2q2

+−2iµ1q+]
∫ ∞

−∞

n∏
k=1

dξk

∏
k1<k2

∣∣ξk1 − ξk2

∣∣ e− t
2

∑n
k=1 ξ 2

k

(25)

with

t = N
(
1 + 2J 2q2

+

)
2q2

+

. (26)

The integral in (25) is a particular case of the Selberg integral [15] and can be evaluated
explicitly. We do not give the resulting expression here, because it is not needed for our
purposes.

We note for later purposes that a formula for K(1)

N,n(µ
∗
2) can obviously be obtained from

the above expression by taking its complex conjugate and then replacing µ∗
1 with µ∗

2.
We next consider the product of the expression (12) with its complex conjugate at a

different value of the spectral parameter and average it over the GOE. From now on we use
the index σ = 1, 2 to label the N-component vectors Sσ stemming from the first/second set
of integrals. To write the resulting expression in a compact form, it is again convenient to
introduce a 2n × 2n matrix Q̂ with the matrix elements Q̂

σ1,σ2
kl = ST

σ1,k
Sσ2,l . Here k and l take

the values 1, . . . , n. In terms of this matrix

K(2)

N,n(µ1, µ2) = 1

(2π)Nn

∫ n∏
k=1

dS1,k dS2,k exp

{
i

2
µ1

n∑
k=1

ST
1,kS1,k

− i

2
µ∗

2

n∑
k=1

ST
2,kS2,k − J 2

8N
Tr(Q̂L̂Q̂L̂)

}
(27)

where L̂ = diag(1n,−1n). Again employing the same integration theorem as above and
changing Q̂ → 2NQ̂ we arrive at

K(2)
N,n(µ1, µ2) = C

(2)
N,n

∫
Q̂>0

dQ̂ e− N
2 [−2iTrM̂Q̂+J 2Tr(Q̂L̂Q̂L̂)] det Q̂

(N−2n−1)/2
(28)
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provided N � 2n + 1, where M̂ = diag(µ11n,−µ∗
21n) and

C
(2)
N,n = (N)Nn(π)−n(2n−1)/2 1∏2n−1

j=0 �
(

N−j

2

) .

This equation differs from its analogue (17) in one important aspect: it is now of little
use to introduce the eigenvalues/eigenvectors of Q̂ as integration variables. Rather, it is
natural to treat Q̂L = Q̂L̂ as a new matrix to integrate over. Such (non-symmetric!) matrices
satisfy Q̂T

L = L̂Q̂LL̂, have all eigenvalues real and can be diagonalized by a (pseudo-
orthogonal) similarity transformation Q̂L = T̂ 0q̂ T̂ −1

0 , where q̂ = diag(q̂1,−q̂2) and the n×n

diagonal matrices q̂1, q̂2 satisfy q̂1 > 0, q̂2 > 0. Pseudo-orthogonal matrices T̂ 0 satisfy
T̂ T

0 L̂T̂ 0 = L̂ and form the group O(n, n) (the corresponding symmetry is conventionally
called a ‘hyperbolic symmetry’ in the random matrix literature, see [17]).

It turns out that a more convenient way to proceed is to block diagonalize the matrices
Q̂L:

Q̂L = T̂ −1

(
P̂ 1

−P̂ 2

)
T̂ where T̂ ∈ O(n, n)

O(n) × O(n)

and P̂ 1,2 are n × n real symmetric, with positive eigenvalues q̂1,2, respectively. The
integration measure [dQ̂L] can be derived in terms of the new variables following the
standard steps (see, e.g., [20]) outlined in the appendix of the present paper. We arrive at
[dQ̂] = AdP̂ 1 dP̂ 2

∏
k1,k2

(
q1,k1 + q2,k2

)
dµ(T ), where A = G2

n

/
[n!2n(n+1)/2] and the last

factor is the invariant measure on the manifold of T-matrices. An explicit expression for this
is presented, for reference purposes, in the appendix.

After all these preparatory steps we arrive at the following expression:

K(2)
N,n = AC

(2)
N,n

∫
P̂1>0

∫
P̂1>0

dP̂ 1 dP̂ 2 I (M̂, P̂ 1, P̂ 2)

×
∏
k1,k2

(
q1,k1 + q2,k2

)
det[−P̂ 1P̂ 2]

(N−2n−1)/2
e− NJ 2

2 Tr(P̂ 2
1+P̂ 2

2) (29)

where

I (M̂, P̂ 1, P̂ 2) =
∫

dµ(T̂ ) exp

{
iN Tr

(
µ̂11n

µ∗
21n

)
T̂ −1

(
P̂ 1

−P̂ 2

)
T̂

}
. (30)

Employing the explicit parametrization for the matrices T given in the appendix we can rewrite
the above integral as

I (M̂, P̂ 1, P̂ 2) = eiN
µ1+µ∗

2
2

∑
k(q1k−q2k)I0(M̂, P̂ 1, P̂ 2) (31)

where

I0(M̂, P̂ 1, P̂ 2) =
∫ ∞

−∞

n∏
k=1

dψk

∏
k1<k2

∣∣cosh ψk2 − cosh ψk2

∣∣ ∫ [dµ(OL)][dµ(OR)]

× exp

{
iN

µ1 − µ∗
2

2
Tr cosh ψ̂

[
ÔL

T P̂1ÔL + ÔR
T P̂2ÔR

]}
(32)

ÔL,R ∈ O(n), and ψ̂ is diagonal.
In the case of GUE matrices studied in [6] a helpful trick under similar conditions was

to perform the (unitary) group integrals explicitly by employing the famous Itzykson–Zuber–
Harish–Chandra integration formula [10]. The lack of an analogous formula for the orthogonal
group forces us to take a slightly different route.
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It is easy to see that the value of this integral can depend only on the eigenvalue matrices
q̂1 and q̂2. Let us therefore introduce the eigenvalues (and corresponding eigenvectors) of
the Hermitian matrices P̂ 1 > 0 and P̂ 2 > 0 as the integration variables. This results in the
following expression:

K(2)

N,n(µ1, µ2) = C̃
(2)

N,n

∫ ∞

0

∏
i

dq1,iq
−n−1/2
1,i |�{q̂1}|

∫ ∞

0

∏
i

dq2,iq
−n−1/2
2,i |�{q̂1}|

×
∏
k1,k2

(
q1,k1 + q2,k2

)
I (M̂, q̂1, q̂2) exp

(
−N

2

n∑
i=1

A(q1,i) − N

2

n∑
i=1

A∗(q2,i )

)

(33)

where

C̃
(2)
N,n = 1

2n(n+1)/2n!3
G4

nC
(2)
N,n (34)

A(q) = J 2q2 − 2iµq − ln q and A∗(q) = J 2q2 + 2iµq − ln q. (35)

Again, we need to perform an asymptotic analysis as N → ∞. The most interesting
regime occurs when one keeps the difference Re(µ1 − µ∗

2) ≡ ω and the regularization δ so
small as to ensure N max (ω, δ) < ∞, while µ = Re (µ1+µ2)

2 is kept in the range |µ| < J
√

2.
The stationary points of A(q) and A∗(q) are now given by

q1,i − iµ − 1

q1,i

= 0 and q2,i + iµ − 1

q2,i

= 0 (36)

where i = 1, 2, . . . , n. Each of these two equations has two solutions:

q1± = iµ ±
√

2J 2 − µ2

2J 2
and q2± = −iµ ±

√
2J 2 − µ2

2J 2
(37)

but only for q1+, q2+ = q∗
1+ are the real parts positive; that is, only then do the corresponding

saddle points contribute to the integral over the positive semiaxis q1,i > 0 or q2,i > 0.
Consequently, among the 22n possible sets of stationary points, only the choice

q̂1 = diag(q1+, . . . , q1+) q̂1 = diag(q∗
1+, . . . , q

∗
1+) (38)

is relevant. This is a major simplification, because for such a choice the integrand in (31) turns
out to be independent of the matrices Ô1, Ô2.

Taking care of the Vandermonde determinants when calculating the fluctuations around
the chosen saddle points and remembering that

q1 + q∗
1 = πρ(µ) q1q

∗
1 = 1/2J 2 (39)

where ρ(µ) = 1
πJ 2

√
2J 2 − µ2 is the mean density of eigenvalues for GOE matrices, we

observe that when the asymptotic expression for the correlation function under consideration
is divided by the product of the negative moments (25) the Selberg integrals cancel out, as
well as all the exponential factors too. The resulting expression amounts to

Kn(µ1, µ2) = lim
N→∞

〈[det(µ11N − Ĥ ) det(µ∗
21N − Ĥ )]−n/2〉

〈det(µ11N − Ĥ )
−n/2〉〈det(µ∗

21N − Ĥ )
−n/2〉

= C × F GOE
n (ε) (40)

where

F GOE
n (ε) = enε

∫ ∞

1

n∏
k=1

dλk√
λ2

k − 1

∏
k1<k2

∣∣λk1 − λk2

∣∣ e−ε
∑n

k=1 λk (41)
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in which we have introduced variables λk = cosh ψk ∈ [1,∞),

ε = −iNπρ(µ)(µ1 − µ∗
2)/2 (42)

and

C = (πρJ )n
2

(
N

2

)n2/2
(2π)n/2

n!

1[ ∏n
j=1 �

(
j

2

)]2 . (43)

This expression is valid for all |ε| < ∞, i.e. as far as (µ1 − µ∗
2) = O(1/N), and constitutes

one of the main results of the present paper. In the subsequent analysis we concentrate on the
moments of characteristic polynomials and thus treat ε as a real parameter.

It is instructive to compare (41) with its counterpart for the Gaussian unitary ensemble
(see [21]; in [6] the corresponding expression is implicit):

F GUE
n (ε) = enε

∫ ∞

1

n∏
k=1

dλk

∏
k1<k2

(
λk1 − λk2

)2
e−ε

∑n
k=1 λk . (44)

The latter integral is a specific case of the Selberg integral [15] and can be immediately
evaluated, yielding

F GUE
n (ε) = 1

εn2

n−1∏
j=0

j !(j + 1)!. (45)

Such a formula exemplifies a ‘normal’ dependence of the negative moments on ε: namely,
one can extract the rate of divergence as ε → 0 by analysing the perturbative expansion of
the integral as ε → ∞. Performing the latter limit is effectively the same as considering the
case when δ = Im µ1,2 is left unscaled by the mean eigenvalue density (see the introduction).
In other words, it is equivalent to considering the limit δ → 0 after taking N → ∞. Thus
for the GUE the asymptotics of the negative moments is the same irrespective of the order in
which limits are taken, and so is relatively uninteresting.

The integral (41) behaves in this sense ‘anomalously’. It does not belong to the class
of Selberg integrals and apart from when n = 1 (in which case it just yields the Macdonald
function K0(ε)) we have failed to evaluate it explicitly in a simple closed form. We therefore
proceed to analyse the limits ε → ∞ and ε → 0 separately.

In the perturbative region ε 	 1 the integral is obviously dominated by a small vicinity
of the lower limit: λk − 1 � 1. Introducing variables xk ∈ [0,∞) such that λk = 1 + xk/ε,
we immediately see that asymptotically the integral is again of Selberg type:

F GOE
n (ε 	 1) = 1

2n/2εn2/2

∫ ∞

0

n∏
k=1

dxk√
xk

∏
k1<k2

∣∣xk1 − xk2

∣∣ e−∑n
k=1 xk (46)

= 1

2n/2εn2/2

n−1∏
j=0

�
( 3+j

2

)
�

( 1+j

2

)
�

(
3
2

) = 1

εn2/2

n!

(2π)n/2


 n∏

j=1

�

(
j

2

)


2

. (47)

We then see that the perturbative behaviour for GOE moments is essentially of the same type
as that for GUE moments:

Kn(µ1, µ2) = (πρ(µ)J )n
2

(
N

2ε

)n2/2

=
(

πρ(µ)J

−i[µ1 − µ∗
2]/J

)n2/2

. (48)
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In contrast to this, in the non-perturbative region ε → 0 the behaviour of the GUE and
GOE moments is very different. In this limit the integral is dominated by λk ∼ ε−1 	 1 and
it is natural to introduce rescaled variables yk = ελk, leading to

F GOE
n (ε � 1) = 1

εn(n−1)/2

∫ ∞

ε

. . .

∫ ∞

ε

n∏
k=1

dyk

yk

∏
k1<k2

∣∣yk1 − yk2

∣∣ e−∑n
k=1 yk . (49)

Note that one cannot set the lower limit of integration with respect to the variables yk to be zero,
because the corresponding integrals diverge logarithmically there. To extract the leading-order
behaviour as ε → 0 we differentiate the function F̃n(ε) = εn(n−1)/2F GOE

n (ε � 1) with respect
to its argument, reducing it asymptotically to a Selberg-type integral
d

dε
F̃n(ε) = −n

ε
e−ε

∫ ∞

ε

dy2

y2
e−y2 . . .

∫ ∞

ε

dyn

yn

e−yn (y2 − ε) · · · (yn − ε)
∏

2�k<l�n

|yk − yl|

(50)

−→ −n

ε

∫ ∞

0

n−1∏
k=1

dyk e−yk

∏
1�k<l�(n−1)

|yk − yl| = −n

ε

n−2∏
j=0

�
( 3+j

2

)
�

( 2+j

2

)
�

(
3
2

) . (51)

Thus, we conclude that for all integers n � 1

F GOE
n (ε → 0) = 2n−1

πn/2
n

n−1∏
j=0

[
�

(
1 +

j

2

)][
�

(
j + 1

2

)]
ln 1/ε

εn(n−1)/2
. (52)

This constitutes another of our main results, the point being that it agrees with the asymptotic
expression (11) predicted by the heuristic theory of dominating singularities outlined in
section 2.
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Appendix. Calculation of the Jacobian

To evaluate the integral in (28) one needs to calculate the Jacobian generated by the variable
transformation Q̂L = T̂ −1P̂ T̂ , with P̂ = diag(P̂ 1,−P̂2) = P̂ T and P̂ 1 > 0, P̂ 2 > 0 being
real symmetric n × n matrices. For the matrices T̂ ∈ O(n,n)

O(n)×O(n)
we employ the following

explicit parametrization in terms of a real n × n matrix t̂ :

T̂ =
(√

1 + t̂ t̂ T t̂

t̂ T
√

1 + t̂ T t̂

)
hence T̂ −1 =

(√
1 + t̂ t̂ T −t̂

−t̂ T
√

1 + t̂ T t̂

)
.

It is convenient to follow the scheme suggested in [20]. One starts by considering the
relation between the matrix differentials:

dQ̂ = T̂ −1 d ˆ̃QT̂ d ˆ̃Q = dP̂ + (P̂ dτ̂ − dτ̂ P̂ ) (53)

where we have introduced the notation dτ̂ = dT̂ T̂ −1. To calculate the Jacobian the difference
between dQ̂ and d ˆ̃Q is immaterial and we omit the tilde henceforth. Partitioning the matrix dQ̂

into four n × n sub-blocks dq̂pq , p, q = 1, 2, one then rewrites the above relation blockwise:

dq̂11 = dP̂ 1 + (P̂ 1dτ̂11 − dτ̂11P̂ 1) dq̂22 = −dP̂ 2 − (P̂ 2 dτ̂22 − dτ̂22P̂ 2)

dq̂12 = P̂ 1 dτ̂12 + dτ̂12P̂ 2 dq̂21 = dq̂T
12.
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Inspecting the block structure of the corresponding Jacobian, symbolically written as
J = det(d[q̂11, q̂22, q̂12]/d[P̂ 1, P̂ 2, τ̂ ]), one may easily verify that

J = det(d[q̂12]/d[τ̂12]) = det(P̂ 1 ⊗ 1n + 1n ⊗ P̂ 2) =
n∏
i,j

(q1,i + q2,j )

where q1,i and q2,i are (positive) eigenvalues of the matrices P̂ 1, P̂ 2. Then an intermediate
result for the measure can be schematically written as

dQ̂ =
n∏
i,j

(q1,i + q2,j ) dP̂ 1 dP̂ 2 det(d[τ̂12]/d[t̂ ]) dt̂

where, explicitly

−d[τ̂12] = [dT11][T −1]12 + [dT ]12[T −1]22 = d
[√

1 + t̂ t̂ T
]
t̂ + dt̂

√
1 + t̂ T t̂ .

To calculate the remaining determinant we employ the singular value decomposition
t̂ = Ô−1

L sinh θ̂ ÔR expressing t̂ in terms of the two real orthogonal n × n matrices
ÔL,R ∈ O(n) and a real diagonal matrix θ̂ = diag (θ1, . . . , θn), assuming, for uniqueness,
θ1 > · · · > θn. Then

√
1 + t̂ t̂ T = Ô−1

L cosh θ̂ ÔL and
√

1 + t̂ T t̂ = Ô−1
R cosh θ̂ ÔR . Further

introducing dv̂L,R = dÔL,R[ÔL,R]−1 and d ˆ̃τ = ÔL d[τ̂12]Ô−1
R we find, after straightforward

manipulations

d ˆ̃τ = dθ̂ + sinh θ̂ dv̂R cosh θ̂ − cosh θ̂ dv̂L sinh θ̂ .

Next, differentiating ÔL,RÔT
L,R = 1, we observe that dv̂L,R must be antisymmetric, hence

dv̂ii = 0 and dv̂j �=i = −dv̂ij , from which it is clear that [d ˆ̃τ ]ii = θi for all i = 1, . . . , n. At
the same time, for any of the n(n − 1)/2 pairs 1 � i < j � n we have, in vector notation, the
relation between the differentials(

dτ̃ij

dτ̃j i

)
=

(
sinh θi cosh θj − cosh θi sinh θj

− cosh θi sinh θj sinh θi cosh θj

)(
(dv̂R)ij

(dv̂L)ij

)
. (54)

The Jacobian in question then reduces to a product of the determinants of the matrices entering
in the above equation, which are simply |sinh2 θi−sinh2 θj | = |cosh 2θi−cosh 2θj |/2. Finally,
we introduce ψi = 2θi, remove the relative ordering of ψi in favour of the factor 1/n! in the
measure and remember that [dv̂L,R] gives rise to the product of invariant measures [dµ(OL,R)]
on the orthogonal group O(n) (which we assumed to be normalized to unity). The measure
[dQ̂L] in the coordinates P̂ 1,2, ψ̂, ÔL,R then assumes the following form:

[dQ̂] = G2
n

2n(n+1)/2n!

n∏
i,j

(
q1,i + q2,j

)
×

∏
1�i<j�n

|cosh ψi − cosh ψj | dP̂ 1 dP̂ 2 dψ̂[dµ(OL)][dµ(OR)] (55)

where −∞ � ψi < ∞ for i = 1, . . . , n.
To conclude, we give the explicit expression for the following combination used in the

main text:

Tr

[(
µ̂11n

µ∗
21n

)
T̂ −1

(
P̂ 1

−P̂ 2

)
T̂

]
= Tr

(
µ̂11n

µ∗
21n

) (
cosh ψ̂/2 −sinh ψ̂/2
−sinh ψ̂/2 cosh ψ̂/2

)

×
(

P̂ L

−P̂ R

)(
cosh ψ̂/2 sinh ψ̂/2
sinh ψ̂/2 cosh ψ̂/2

)
= Tr[P̂ L(µ1 cosh2 ψ̂/2 − µ∗

2 sinh2 ψ̂/2)]

− Tr[P̂ R(µ∗ cosh2 ψ̂/2 − µ sinh2 ψ̂/2)]

= 1
2 (µ1 + µ∗

2)Tr(P̂ L − P̂ R) + 1
2 (µ1 − µ∗

2)(Tr P̂ L cosh ψ̂ + Tr P̂ R cosh ψ̂) (56)
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where we have introduced matrices P̂ L = ÔLP̂ 1Ô
−1
L and P̂ R = ÔRP̂ 2Ô

−1
R having the same

eigenvalues q̂1 = diag(q1,1, . . . , q1,n) and q̂2 = diag(q2,1, . . . , q2,n) as the matrices P̂ 1,2.
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